Model 2001 Specifications

The following pages contain the complete specifications for the 2001. Every effort has been made to make these specifications complete by characterizing its performance under the variety of conditions often encountered in production, engineering and research.

The 2001 provides 5-minute, 1-hour, 24-hour, 90-day, 1-year, and 2-year specifications, with full specifications for the 90-day, 1-year and 2-year specifications. This allows the user to utilize 90-day, 1-year, or 2-year recommended calibration intervals, depending upon the level of accuracy desired. As a general rule, the 2001's 2-year performance exceeds a 5½-digit DMM's 90-day, 180-day or 1-year specifications. 6½-or 7½-digit performance is assured using 90-day or 1-year specifications.

ABSOLUTE ACCURACY

To minimize confusion, *all 90-day, 1-year and 2-year 2001 specifications are absolute accuracy,* traceable to NIST based on factory calibration. Higher accuracies are possible, based on your calibration sources. For example, calibrating with a 10V primary standard rather than a 20V calibrator will reduce calibration uncertainty, and can thereby improve total 2001 accuracy for measurements up to 50% of range. Refer to the 2001 calibration procedure for details.

TYPICAL ACCURACIES

Accuracy can be specified as typical or warranted. All specifications shown are warranted unless specifically noted. Almost 99% of the 2001's specifications are warranted specifications. In some cases it is not possible to obtain sources to maintain traceability on the performance of every unit in production on some measurements (e.g., high-voltage, high-frequency signal sources with sufficient accuracy do not exist). Since these values cannot be verified in production, the values are listed as typical.

2001 SPECIFIED CALIBRATION INTERVALS

MEASUREMENT FUNCTION	24 HOUR¹	90 DAY ²	1 YEAR ²	2 YEAR ²
DC Volts DC Volts Peak Spikes	•	•	•	•
•			•	•
AC Volts rms		•3	•	•
AC Volts Peak		•3 •3	•	•
AC Volts Average AC Volts Crest Factor		•3	:	:
Ohms	•	•	•	•
DC Current	•	•	•	•
DC In-Circuit Current		•	•	•
AC Current		• 3	•	•
Frequency		•	•	•
Temperature (Thermocouple)		•	•	•
Temperature (RTD)		•	•	•

¹ For $T_{CAL} \pm 1^{\circ}C$.

² For Tcal ±5°C.

³ For ±2°C of last AC self cal.

DCV INPUT CHARACTERISTICS AND ACCURACY

D01	01 01 11 11 11 11	O I E I II O I I	00 / 11 10 /	1000111101						
			DEFAULT			AC	CURACY1			TEMPERATURE COEFFICIENT
	FULL	RESO-	RESO-	INPUT	± ((ppm of rea	ding + ppm	of range)		± (ppm of reading + ppm of range)/°C
RANGE	SCALE	LUTION	LUTION	RESISTANCE	5 Minutes ¹²	24 Hours ²	90 Days ³	1 Year ³	2 Years ³	Outside TcaL± 5°C
$200mV$ 4	± 210.00000	10 nV	100 nV	$>10\mathrm{G}\Omega$	3 + 3	10 + 6	25 + 6	37 + 6	50 + 6	3.3 + 1.5
2 V	± 2.1000000	100 nV	1 μV	$>10\mathrm{G}\Omega$	2 + 1.5	7 + 2	18 + 2	25 + 2	32 + 2	2.6 + 0.15
20 V	± 21.000000	1 μV	10 μV	$>$ 10 G Ω	2 + 1.5	7 + 4	18 + 4	24 + 4	32 + 4	2.6 + 0.7
200 V	± 210.00000	10 μV	100 μV	$10 \mathrm{M}\Omega \pm 1\%$	2 + 1.5	13 + 3	27 + 3	38 + 3	52 + 3	4.3 + 1
1000 V	± 1100.0000	100 μV	1 mV	$10 \mathrm{M}\Omega \pm 1\%$	10 + 1.5	17 + 6	31 + 6	41 + 6	55 + 6	4.1 +1

DC VOLTAGE UNCERTAINTY = \pm [(ppm of reading) × (measured value) + (ppm of range) × (range used)] / 1,000,000. % ACCURACY = (ppm accuracy) / 10,000.

¹PPM OF RANGE = 2 counts for ranges up to 200V, 1 count on 1000V range at 61/2 digits.

SPEED AN	D ACCURACY	⁵ 90 Days		
		ACCL	JRACY	
	± (ppm of read	ling + ppm of rai	nge + ppm of ran	ige rms noise ¹⁰)
	1PLC			
	DFILT On,	1PLC	0.1PLC	0.01PLC ¹¹
RANGE	10 Readings	DFILT Off	DFILT Off	DFILT Off
200 mV 4	25+6+0	25+6+0.6	25+30+10	100+200+15
2 V	18+2+0	18+2+0.2	18+25+1	130+200+3
20 V	18+4+0	18+4+0.3	18+20+0.5	130+200+3
200 V	27+3+0	27+5+0.3	27+20+0.8	130+200+3
1000 V	31+6+0	31+6+0.1	31+21+0.5	90+200+2

PLC = power line cycle; DFILT = digital filter

NOISE REJE	CTION (dB)			
SPEED (Number of Power Line Cycles)	AC and D Line Sync On ⁷	C CMRR ⁶ Internal Trigger ⁸	Line Sync On ⁷ 25-Reading DFILT On	AC NMRR Line Sync On ⁷ DFILT Off	Internal Trigger ⁸ DFILT Off
$\begin{array}{c} NPLC = 10 \\ NPLC \geq 1 \\ NPLC < 1 \end{array}$	140 140 60	120 120 50	90 90 30	80 80 20	60 60 0

 $Effective\ noise\ is\ reduced\ by\ a\ factor\ of\ 10\ for\ every\ 20\ dB\ of\ noise\ rejection\ (140\ dB\ reduces\ effective\ noise\ by\ 10,000,000:1).$

 $CMRR is \, rejection \, of \, undesirable \, AC \, or \, DC \, signal \, between \, LO \, and \, earth. \, NMRR \, is \, rejection \, of \, undesirable \, AC \, signal \, between \, HI \, and \, LO.$

DCV READING RATES9,10

200mV, 2V, 200V Ranges

NPLC	MEASUREMENT APERTURE	DEFAUL BITS DIGITS			READINGS/SECOND TO IEEE-488 Auto Zero Off Auto Zero On	READINGS/SECOND WITH TIME STAMP TO IEEE-488 Auto Zero Off Auto Zero On
10 2 1 0.2 0.1 0.02 0.01 0.01	167 ms (200 ms) 33.4 ms (40 ms) 16.7 ms (20 ms) 3.34 ms (4 ms) 1.67 ms (2 ms) 334 µs (400 µs) 167 µs (167 µs) 167 µs (167 µs)	28 7½ 26 7½ 25 6½ 22 6½ 21 5½ 16 4½ 16 4½	6 (5.1) 30 (25) 58 (48) 214 (186) 272 (272) 284 (287) 417 (417) 2000 (2000)	2 (1.7) 9 (7.6) 44 (34) 127 (112) 150 (148) 156 (155) 157 (157)	6 2 (1.6) 28 (23) 9 (7.3) 54 (45) 41 (32) 183 (162) 104 (101) 228 (225) 129 (123) 230 (230) 136 (134) 317 (317) 137 (134) 2000 (2000)	6 (4.1) 2 (1.6) 27 (22) 8 (7.2) 49 (41) 37 (30) 140 (126) 88 (85) 156 (153) 100 (96) 158 (156) 104 (103) 198 (198) 105 (103)
	OV Ranges	10 472	2000 (2000)		2000 (2000)	
10 2 1 0.2 0.1 0.02 0.01 0.01 ¹¹	167 ms (200 ms) 33.4 ms (40 ms) 16.7 ms (20 ms) 3.34 ms (4 ms) 1.67 ms (2 ms) 334 µs (400 µs) 167 µs (167 µs) 167 µs (167 µs)	$\begin{array}{cccc} 28 & 7 \frac{1}{2} \\ 26 & 7 \frac{1}{2} \\ 25 & 6 \frac{1}{2} \\ 22 & 6 \frac{1}{2} \\ 21 & 5 \frac{1}{2} \\ 19 & 5 \frac{1}{2} \\ 16 & 4 \frac{1}{2} \\ 16 & 4 \frac{1}{2} \end{array}$	6 (5.1) 30 (25) 57 (48) 201 (186) 201 (201) 227 (227) 422 (422) 2000 (2000)	2 (1.7) 9 (8.2) 42 (38) 102 (113) 126 (116) 129 (129) 130 (130)	6 2 (1.6) 28 (23) 9 (7.8) 54 (45) 43 (35) 173 (162) 102 (99) 175 (173) 105 (105) 178 (178) 114 (114) 333 (333) 117 (117) 2000 (2000)	6 2 (1.6) 27 (22) 9 (7.7) 48 (41) 39 (32) 129 (127) 84 (83) 129 (128) 86 (86) 138 (138) 90 (90) 199 (199) 95 (95)

SETTLING CHARACTERISTICS: <500µs to 10ppm of step size. Reading settling times are affected by source impedance and cable dielectric absorption characteristics. Add 10ppm of range for first reading after range change.

ZERO STABILITY: Typical variation in zero reading, 1 hour, Tref ± 1 °C, 6 ½-digit default resolution, 10-reading digital filter:

ZERO STABILITY

 $Range \qquad 1\,Power\,Line\,Cycle\,Integration \qquad 10\,Power\,Line\,Cycle\,Integration$

 $\begin{array}{ccc} 2V-1000V & \pm 3 \ counts & \pm 2 \ counts \\ 200 \ mV & \pm 5 \ counts & \pm 3 \ counts \end{array}$

ISOLATED POLARITY REVERSAL ERROR: This is the portion of the instrument error that is seen when high and low are reversed when driven by an isolated source. This is not an additional error—it is included in the overall instrument accuracy spec. Reversal Error: <2 counts at 10V input at 6½ digits, 10 power line cycles, 10-reading digital filter.

INPUT BIAS CURRENT: <100pA at 25°C.

LINEARITY: <1ppm of range typical, <2ppm maximum.

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

DC VOLTS NOTES

- $1. \, Specifications \, are \, for \, 1 \, power \, line \, cycle, \, Auto \, Zero \, on, \, 10\text{-reading digital filter, except as noted.}$
- 2. For $T_{CAL}\pm 1\,^{\circ}C$, following 55-minute warm-up. T_{CAL} is ambient temperature at calibration, which is $23\,^{\circ}C$ from factory.
- 3. For $T_{CAL}\pm 5^{\circ}C$, following 55-minute warm-up. Specifications include factory traceability to US NIST.
- 4. When properly zeroed using REL function.
- 5. For Tcal. $\pm 5^{\circ}$ C, 90-day accuracy. 1-year or 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 6. Applies for $1k\Omega$ imbalance in the LO lead. For 400Hz operation, subtract 10dB.
- $7. \ For \ noise \ synchronous \ to \ the \ line \ frequency.$

- 8. For line frequency ±0.1%.
- See Operating Speed section for additional detail. For DELAY=0, internal trigger, digital
 filter off, display off (or display in "hold" mode). Aperture is reciprocal of line frequency.
 These rates are for 60Hz and (50Hz).
- 10. Typical values.
- 11.In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 12.DCV Transfer Stability typical applications are standard cell comparisons and relative accuracy measurements. Specs apply for 10 power line cycles, 20-reading digital filter, autozero on with type synchronous, fixed range following 2-hour warm-up at full scale to 10% of full scale, at Treff \pm 1°C (Treff is the initial ambient temperature). Specifications on the 1000V range are for measurements within 5% of the initial measurement value and following measurement settling.

DCV PEAK SPIKES MEASUREMENT

REPETITIVE SPI	KES ACCURA	ACY ¹ 90 D	ays, ± 2℃ fr	om last AC se	elf-cal ± (%	6 of reading+	% of range)			
RANGE	0-1kHz ⁴	1kHz- 10kHz	10kHz- 30kHz	30kHz- 50kHz	50kHz- 100kHz	100kHz- 300kHz	300kHz- 500kHz	500kHz- 750kHz	750kHz- 1MHz	TEMPERATURE COEFFICIENT \pm (% of reading+% of range)/ \mathbb{C} Outside $T_{CAL} \pm 2\mathbb{C}$
200 mV 2 V 20 V 200 V ³ 1000 V ³	0.08+0.7 0.08+0.3 0.09+0.7 0.09+0.3 0.1 +0.6	0.08+0.7 0.08+0.3 0.1 +0.7 0.1 +0.3 0.13+0.6	0.1 +0.7 0.1 +0.3 0.12+0.7 0.12+0.3 0.16+0.6	0.15+0.7 0.15+0.3 0.17+0.7 0.17+0.3 0.25+0.6 ²	$\begin{array}{c} 0.25 + 0.7 \\ 0.25 + 0.3 \\ 0.25 + 0.7 \\ 0.25 + 0.3 \\ 0.5 + 0.6^2 \end{array}$	1.0+ 0.7 1.0+0.3 1.0+0.7 1.0+0.3 ²	2.5+0.7 2.5+0.3 2.5+0.7 2.5+0.3 ²	5.5+0.7 5.5+0.3 5.5+0.7 5.5+0.3 ²	9+0.7 9+0.3 9+0.7 $9+0.3^2$	0.002+0.03 0.002+0.03 0.004+0.03 0.004+0.03 0.01 +0.02
Max. % of Range	e ±125%	±125%	±125%	±125%	±125%	±125%	$\pm 125\%$	±100%	±75%	
REPETITIVE SPI	KES ACCURA	ACY ¹ 1 or	2 Years, Tcal	±5°C ±	(% of reading	+% of range)			TEL 1050 ATURE 0.05551015AT
RANGE	0-1kHz ⁴	1kHz- 10kHz	10kHz- 30kHz	30kHz- 50kHz	50kHz- 100kHz	100kHz- 300kHz	300kHz- 500kHz	500kHz- 750kHz	750kHz- 1MHz	TEMPERATURE COEFFICIENT \pm (% of reading+% of range)/ \mathbb{C} Outside $T_{CAL} \pm 5\mathbb{C}$
200 mV 2 V 20 V 200 V ³ 1000 V ³ Max. % of Rang	0.08+0.7 0.08+0.3 0.1 +0.7 0.1 +0.3 0.12+0.6 e ±125%	$0.09+0.7$ $0.09+0.3$ $0.11+0.7$ $0.11+0.3$ $0.16+0.6$ $\pm 125\%$	0.1 +0.7 0.1 +0.3 0.14+0.7 0.14+0.3 0.2 +0.6 ±125%	$0.15+0.7 \\ 0.15+0.3 \\ 0.19+0.7 \\ 0.19+0.3 \\ 0.25+0.6^2 \\ \pm 125\%$	$0.25+0.7$ $0.25+0.3$ $0.25+0.7$ $0.25+0.3$ $0.5+0.6^2$ $\pm 125\%$	1.0+0.7 1.0+0.3 1.0+0.7 1.0+0.3 ² ±125%	$2.5+0.7$ $2.5+0.3$ $2.5+0.7$ $2.5+0.3^2$ $\pm 125\%$	5.5+0.7 5.5+0.3 5.5+0.7 5.5+0.3 ² ±100%	9+0.7 9+0.3 9+0.7 $9+0.3^2$ $\pm 75\%$	0.002+0.03 0.002+0.03 0.004+0.03 0.004+0.03 0.01 +0.02
a o or realing		_12070					_12070	_13070	070	

DEFAULT MEASUREMENT RESOLUTION: 3½ digits.

MAXIMUM INPUT: $\pm 1100V$ peak value, $2\times 10^7V \cdot Hz$ (for inputs above 20V).

NON-REPETITIVE SPIKES: 10% of range per µs typical slew rate.

SPIKE WIDTH: Specifications apply for spikes ${\ge}1\mu s.$

 $\label{eq:RANGECONTROL:} \textbf{In Multiple Display mode, voltage range is the same as DCV range.}$

SPIKES MEASUREMENT WINDOW: Default is 100ms per reading (settable from $0.1\ to\ 9.9s$ in Primary Display mode).

INPUT CHARACTERISTICS: Same as ACV input characteristics.

SPIKES DISPLAY: Access as multiple display on DC Volts. First option presents positive peak spikes and highest spike since reset. Second option presents negative spikes and lowest spike. Highest and lowest spike can be reset by pressing DCV function button. Third option displays the maximum and minimum levels of the input signal. Spikes displays are also available through CONFIG-ACV-ACTYPE as primary displays.

DCV PEAK SPIKES NOTES

- 1. Specifications apply for 10-reading digital filter. If no filter is used, add 0.25% of range typical uncertainty.
- 2. Typical values.
- 3. Add 0.001% of reading $\times\,(V_{\text{IN}}/100V)^2$ additional uncertainty for inputs above 100V.
- 4. Specifications assume AC+DC coupling for frequencies below 200Hz. Below 20Hz add 0.1% of reading additional uncertainty.

AC VOLTS

AC magnitude: RMS or Average. Peak and Crest Factor measurements also available.

ACV INPUT CHARACTERISTICS

RMS RANGE	PEAK INPUT	FULL SCALE RMS	RESOLUTION	DEFAULT RESOLUTION	INPUT IMPEDANCE	TEMPERATURE COEFFICIENT ² \pm (% of reading + % of range) / °C Outside TCAL \pm 5°C
200 mV 2 V 20 V 200 V 750 V	1 V 8V 100 V 800 V 1100 V	210.0000 2.100000 21.00000 210.0000 775.000	100 nV 1 μV 10 μV 100 μV 1 mV	1 μV 10 μV 100 μV 1 mV 10 mV	$\begin{array}{c} 1M\Omega \;\; \pm 2\% \; with < \!140 pF \\ 1M\Omega \;\; \pm 2\% \; with < \!140 pF \\ 1M\Omega \;\; \pm 2\% \; with < \!140 pF \\ 1M\Omega \;\; \pm 2\% \; with < \!140 pF \\ 1M\Omega \;\; \pm 2\% \; with < \!140 pF \\ 1M\Omega \;\; \pm 2\% \; with < \!140 pF \end{array}$	$\begin{array}{c} 0.004 + 0.001 \\ 0.004 + 0.001 \\ 0.006 + 0.001 \\ 0.006 + 0.001 \\ 0.012 + 0.001 \end{array}$

AC VOLTAGE UNCERTAINTY = \pm [(% of reading) × (measured value) + (% of range) × (range used)] / 100. PPM ACCURACY = (% accuracy) × 10,000.

0.015% OF RANGE = 30 counts for ranges up to 200V and 113 counts on 750V range at $5\frac{1}{2}$ digits.

LOW FREC	QUENCY N	MODE RMS ¹	90 Days, ±	2°C from last	AC self-cal, for	1% to 100% o	of range ³	± (% of readi	ng + % of ran	ge)	
RANGE	1-10Hz ⁵	10-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz	50-100kHz	100-200kHz	0.2-1MHz	1-2MHz
200 mV 2 V 20 V 200 V ⁴ 750 V ⁴	0.09+0.015 0.09+0.015 0.1 +0.015 0.1 +0.015 0.13+0.015	0.04+0.015 0.04+0.015 0.05+0.015 0.05+0.015 0.09+0.015	0.03+0.015 0.03+0.015 0.04+0.015 0.04+0.015 0.08+0.015	0.03+0.015 0.03+0.015 0.04+0.015 0.04+0.015 0.08+0.015	0.03+0.015 0.03+0.015 0.06+0.015 0.06+0.015 0.09+0.015	0.035+0.015 0.035+0.015 0.08 +0.015 0.08 +0.015 0.12 +0.015	0.05+0.015 0.05+0.015 0.1 +0.015 0.1 +0.015 0.15+0.015 ⁵	0.17+0.015 0.17+0.015 0.17+0.015 0.17+0.015 0.5 +0.015	0.5+0.025 0.5+0.025 0.5+0.025 0.5+0.025 ⁵	$\begin{array}{c} 2+0.1 \\ 2+0.1 \\ 4+0.2 \\ 4+0.2^5 \end{array}$	5+0.2 5+0.2 7+0.2 ⁵
LOW FREC	QUENCY N	MODE RMS ¹	1 or 2 Year	S, TCAL ± 5℃ f	or 1% to 100%	6 of range ³	± (% of read	ding + % of ra	inge)		
RANGE	1-10Hz ⁵	10-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz	50-100kHz	100-200kHz	0.2-1MHz	1-2MHz
200 mV 2 V 20 V 200 V ⁴ 750 V ⁴	0.11+0.015 0.11+0.015 0.12+0.015 0.12+0.015 0.15+0.015	0.06+0.015 0.06+0.015 0.07+0.015 0.07+0.015 0.11+0.015	0.05+0.015 0.05+0.015 0.06+0.015 0.06+0.015 0.1 +0.015	0.05+0.015 0.05+0.015 0.06+0.015 0.06+0.015 0.1 +0.015	0.05 +0.015 0.05 +0.015 0.085+0.015 0.085+0.015 0.13 +0.015	0.05+0.015 0.05+0.015 0.12+0.015 0.12+0.015 0.18+0.015	0.06+0.015 0.06+0.015 0.13+0.015 0.13+0.015 0.22+0.015 ⁵	0.17+0.015 0.17+0.015 0.17+0.015 0.17+0.015 0.5 +0.015	0.5+0.025 0.5+0.025 0.5+0.025 0.5+0.025 ⁵	$2+0.1$ $2+0.1$ $4+0.2$ $4+0.2^5$	5+0.2 5+0.2 7+0.2 ⁵

NORMAL	MODE			•		cal for 1% to 1	-		eading + % of	•		
RANGE		20	0-50Hz	50-100Hz	0.1–2kHz	2–10kHz	10-30kHz	30-50kHz	50–100kHz	100-200kHz	0.2–1MHz	2 1–2MF
200 mV 2 V 20 V 200 V ⁴ 750 V ⁴		0.2 0.2 0.2	25+0.015 25+0.015 25+0.015 25+0.015 25+0.015	0.07+0.015 0.07+0.015 0.07+0.015 0.07+0.015 0.1 +0.015	0.03+0.015 0.03+0.015 0.04+0.015 0.04+0.015 0.08+0.015	0.03+0.015 0.06+0.015 0.06+0.015	$\begin{array}{c} 0.08 \ +0.015 \\ 0.08 \ +0.015 \end{array}$	0.05+0.015 0.05+0.015 0.1 +0.015 0.1 +0.015 0.15+0.015 ⁵	0.17+0.015 0.17+0.015 0.17+0.015 0.17+0.015 0.5 +0.015 ⁵	0.5+0.025 0.5+0.025 0.5+0.025 0.5+0.025 ⁵	2+0.1 2+0.1 4+0.2 4+0.2 ⁵	5+0.2 5+0.2 7+0.2
NORMAL	MODE I					6 to 100% of r		6 of reading +				
RANGE)–50Hz	50–100Hz	0.1–2kHz	2–10kHz	10–30kHz	30–50kHz	-	100-200kHz	0.2–1MHz	2 1–2MF
200 mV		0.2	5+0.015	0.08+0.015	0.05+0.015	0.05 +0.015	0.05+0.015	0.06+0.015	0.17+0.015	0.5+0.025	2+0.1	5+0.2
$\begin{array}{ccc} 2 & V \\ 20 & V \\ 200 & V^4 \\ 750 & V^4 \end{array}$		0.2 0.2	25+0.015 25+0.015 25+0.015 27+0.015	0.08+0.015 0.08+0.015 0.08+0.015 0.11+0.015	0.05+0.015 0.06+0.015 0.06+0.015 0.1 +0.015	0.085+0.015 0.085+0.015	0.12+0.015 0.12+0.015	0.06+0.015 0.13+0.015 0.13+0.015 0.22+0.015 ⁵	0.17+0.015 0.17+0.015 0.17+0.015 0.5 +0.015 ⁵	0.5+0.025 0.5+0.025 0.5+0.025 ⁵	2+0.1 4+0.2 4+0.2 ⁵	5+0.2 7+0.2
dB ACCUR	RACY RN	/IS	± dB, 9	0 Days, 1 or 2	2 Years, Tcal :	±5°C, Reference	e=1V, Autorang	ing, Low Fregu	ency Mode, A	C+DC Couplir	ng	
	INPUT		,	1–100Hz		-30kHz	30–100kHz	100–2001		.2–1MHz	1–2M	Нz
-54 to-40 -40 to-34 -34 to 6	dB (2 dB (10 dB (20	mV to	2 V)	0.230 0.036 0.023	0	0.225 0.031 0.018	0.236 0.041 0.028	0.355 0.088 0.066	N12 0.	0.265	0.630)
6 to 26 26 to 46 46 to 57.		V to	20 V) 200 V) 775 V)	0.024 0.024 0.018	C	0.024 0.024 0.021	$0.028 \\ 0.028 \\ 0.049^{5}$	0.066 0.066 ⁵		0.538 0.538 ⁵	0.820	J ⁵
ACV READ	DING RA	TES ^{5,6})									
NPLC	MEASUR APERT		BIT			ECOND TO ME Off Auto Zero		DINGS/SECONE to Zero Off A		B TIME ST	GS/SECOND AMP TO IEE Off Auto 2	EE-488
10	167 ms (6 (5.1		1.7)	2	2 (1.6)	2	2	(1.5)
	33.4 ms				30 (24			28 (23)	9 (7.6)		2) 9	(7.5)
2												
		(20 ms) (2 ms)	25	51/2	57 (48 136 (136) 38 ((35)	53 (45) 22 (122)	36 (33) 64 (64)	48 (4 98 (9	1) 34	(30) (56)
1	16.7 ms	(20 ms) (2 ms) 167 μs)	25 21 16	$5^{1/2}$ $5^{1/2}$ $4^{1/2}$	57 (48) 38 () 70 () 71 ((35) (70) 12 (71) 12	53 (45)	36 (33)	48 (4	1) 34 8) 56	(30)
1 0.1 0.01 0.01 ⁸	16.7 ms 1.67 ms 167 μs (167 μs ((20 ms) (2 ms) (167 μs) (167 μs)	25 21 16 16	$5^{1/2}$ $5^{1/2}$ $4^{1/2}$	57 (48 136 (136 140 (140 2000 (2000) 38 () 70 () 71 ((35) (70) 12 (71) 12	53 (45) 22 (122) 27 (127) 00 (2000)	36 (33) 64 (64) 66 (66)	48 (4 98 (9 99 (9	1) 34 8) 56	(30) (56)
1 0.1 0.01 0.01 ⁸ AC COUPI	16.7 ms 1.67 ms 167 μs (167 μs ((20 ms) (2 ms) (167 µs) (167 µs) or AC or	25 21 16 16 16	$5\frac{1}{2}$ $5\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$	57 (48 136 (136 140 (140 2000 (2000 owing % of re) 38 () 70 () 71 () ading:	(35) (370) 12 (70) 12 (71) 12 200 ACV CREST	53 (45) 22 (122) 27 (127) 00 (2000)	36 (33) 64 (64) 66 (66) MEASUREM	48 (4 98 (9 99 (9	1) 34 8) 56	(30) (56)
1 0.1 0.01 0.01 ⁸ AC COUPI Normal Mode (rms, avera	16.7 ms 1.67 ms 167 μs (167 μs (LING: For eage)	(20 ms) (2 ms) (167 µs) (167 µs) or AC or	25 21 16 16 16	5½ 5½ 4½ 4½ 4½ g, add the foll	57 (48 136 (136 140 (140 2000 (2000 owing % of re) 38 () 70 () 71 () ading:	(35) (270) 11: (71) 11: 200 ACV CREST CREST FACTO CREST FACTO CREST FACTO CREST FACTO	53 (45) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits.	48 (4 98 (9 99 (9	1) 34 8) 56 9) 58	(30) (56) (58)
1 0.1 0.01 0.01 ⁸ AC COUPI Normal Mode (rms, avera	16.7 ms 1.67 ms 167 μs (167 μs (LING: For eage)	(20 ms) (2 ms) (167 µs) (167 µs) or AC or	25 21 16 16 16	5½ 5½ 4½ 4½ 4½ g, add the foll 2 20–50Hz	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1) 38 () 70 () 71 () 71 (eading:	(35) (270) 1: (71) 1: 200 ACV CREST CREST FACTO CREST FACTO CREST FACTO Uncertaint	53 (45) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY y.	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un	48 (4 98 (9 99 (9 ENT ¹¹	1) 34 8) 56 9) 58	(30) (56) (58)
1 0.1 0.01 0.01 ⁸ AC COUPI Normal Mode (rms, avera Low Frequenc (rms)	16.7 ms 1.67 ms 167 μs (167 μs (LING: For eage) cy Mode	(20 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz	25 21 16 16 16 19 couplin 10-20Hz	5½ 5½ 4½ 4½ 4½ g, add the foll 2 20–50Hz 0.41	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1 0.07	38 () 70 () 71 () 71 () eading: 00–200Hz 0	(35) (270) 1: (71) 1: 200 ACV CREST CREST FACTO CREST FACTO CREST FACTO Uncertaint MEASUREMEN	53 (45) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un	48 (4 98 (9 99 (9 14 14 14 14 14 14 14 14 14 14 14 14 14	1) 34 8) 56 9) 58	(30) (56) (58)
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera cow Frequenc (rms) For low frequence AC+DC Coadditional	16.7 ms 1.67 ms 1.67 ms 167 µs (167 µs (167 µs (169 ps) 16 ps 1	(20 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz — 0.1 below 20 G: For nty, mu	25 21 16 16 18 10–20Hz 0.01 00Hz, specif	5½ 5½ 5½ 4½ 4½ 4½ 20–50Hz 0.41	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1 0.07 0 for sine wave i) 38 () 70 () 71 () 200Hz 0.015 0 nputs only.	(35) (37) (37) (37) (37) (37) (37) (37) (37	53 (45) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY THE TIME: 100m	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un s plus rms me Same as ACV i	48 (4 98 (9 99 (9 99 (9 ENT)) ENT) neertainty + A easurement tiningut. Iz - 1MHz.	1) 34 8) 56 9) 58 AC normal 1	(30) (56) (58)
1 0.1 0.01 0.018 AC COUPL Normal Mode (rms, avera .ow Frequenc (rms) For low freque AC + DC CO additiona and avera	16.7 ms 1.67 ms 167 µs (167 µs (167 µs (167 µs (169 µ	(20 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz — 0.1 below 20 G: For nty, mu	25 21 16 16 18 10–20Hz 0.01 00Hz, specif	5½ 5½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to of AC rms voltatheratio (DC/	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1 0.07 0 for sine wave i) 38 () 70 () 71 () 200Hz 0.015 0 nputs only.	(35) (37) (37) (37) (37) (37) (37) (37) (37	53 (45) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY TO TIME: 100m ACTERISTICS: S PR FREQUENCY	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un s plus rms me Same as ACV i	48 (4 98 (9 99 (9 99 (9 ENT)) ENT) neertainty + A easurement tiningut. Iz - 1MHz.	1) 34 8) 56 9) 58 AC normal 1	(30) (56) (58)
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera cms) For low frequence (rms) For low frequence additional and avera cms 200	16.7 ms 1.67 ms 167 µs (169 µ	(20 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz 0.1 below 20 G: For nty, mu	25 21 16 16 18 10–20Hz 0.01 00Hz, specif DC>20% of ltiplied by s.	5½ 5½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to of AC rms voltatheratio (DC/	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1 0.07 0 for sine wave i) 38 () 70 () 71 () 200Hz 0.015 0 nputs only.	(35) (37) (37) (37) (37) (37) (37) (37) (37	53 (45) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY TO TIME: 100m ACTERISTICS: S PR FREQUENCY	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un s plus rms me Same as ACV i	48 (4 98 (9 99 (9 99 (9 ENT)) ENT) neertainty + A easurement tiningut. Iz - 1MHz.	1) 34 8) 56 9) 58 AC normal 1	(30) (56) (58)
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera cow Frequenc (rms) For low freque AC + DC CO additiona and avera 200, 200, 2	16.7 ms 1.67 ms 167 µs (167 µ	(20 ms) (2 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz 0.1 below 20 G: For nty, mu irement.	25 21 16 16 16 19 10–20Hz 0.01 00Hz, specif DC>20% of ltiplied by s. % of Reac 0.05 0.07	5½ 5½ 4½ 4½ 4½ 4½ 0, add the follor 20–50Hz 0.41 0 fications apply to the ratio (DC/ding)	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App) 38 () 70 () 71 () 200Hz 0.015 0 nputs only.	(35) (37) (37) (37) (37) (37) (37) (37) (37	53 (45) 22 (122) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY TO TIME: 100m ACTERISTICS: S PR FREQUENCY PR DISPLAY: Ac	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. : Peak AC un s plus rms me Same as ACV in (RANGE: 20H cess as multip	48 (4 98 (9 99 (9 ENT ¹¹ Exact the season of the season	1) 34 8) 56 9) 58 AC normal 1 ne.	(30) (56) (58) mode ri
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera cow Frequenc (rms) For low frequenc additional and avera 2V, 2 AVERAGE Normal mode	16.7 ms 1.67 ms 1.67 ms 167 µs (167 µs	(20 ms) (2 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz 0.1 below 20 G: For nty, mu irement.	25 21 16 16 16 10 10–20Hz 0.01 00Hz, specif DC>20% of Reac 0.05 0.07 REMENT as apply fr	5½ 5½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to of AC rms voltathe ratio (DC/ding) from 10% to 10	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App % of Range 0.1 0.01) 38 () 70 () 71 () 71 () eading: 00-200Hz 0.015 0 nputs only. e following dies to rms	(35) (370) 11: (70) 11: (71) 11: 200 ACV CREST CREST FACTO CREST FACTO CREST FACTO Uncertaint MEASUREMEN INPUT CHARA CREST FACTO CREST FACTO CREST FACTO	53 (45) 22 (122) 22 (122) 27 (127) 00 (2000) FFACTOR N PR = Peak AC / PR RESOLUTIO DR ACCURACY TO TIME: 100m ACTERISTICS: S PR FREQUENCY PR DISPLAY: Ac	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un s plus rms me Same as ACV i (RANGE: 20H cess as multip	48 (4 98 (9 99 (9 ENT ¹¹ Exact the season of the season	1) 34 8) 56 9) 58 AC normal 1 ne.	(30) (56) (58) mode rr
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera .ow Frequenc (rms) For low freque AC + DC CO additiona and avera 200 2V, 2 AVERAGE Normal mode MHz. Add 0	16.7 ms 1.67 ms 1.67 ms 167 µs (168 µs (169 µs	(20 ms) (2 ms) (2 ms) (2 ms) (167 µs) (167 µs) (167 µs) (167 µs) (167 µs) (168 µs) (169 µs) (25 21 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	5½ 5½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to fAC rms voltathe ratio (DC/.	57 (48 136 (136 140 (140 2000 (2000 owing % of re 50–100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App % of Range 0.1 0.01) 38 () 70 () 71 () 71 () eading: 00-200Hz 0.015 0 nputs only. e following dies to rms	(35) (370) 11: (70) 11: (71) 11: 200 ACV CREST CREST FACTO CREST FACTO CREST FACTO Uncertaint MEASUREMEN INPUT CHARA CREST FACTO CREST FACTO CREST FACTO	53 (45) 22 (122) 27 (127) 20 (2000) FFACTOR IN OR = Peak AC / OR RESOLUTIO OR ACCURACY OR A	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. C: Peak AC un s plus rms me Same as ACV in (RANGE: 20H cess as multip	48 (4 98 (9 99 (9 99 (9 14 14 14 14 14 14 14 14 14 14 14 14 14	1) 34 8) 56 9) 58 AC normal 1 ne. + (% of re-	(30) (56) (58) mode rr
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera cow Frequenc (rms) For low frequenc additional and avera 2V, 2 AVERAGE Normal mode	16.7 ms 1.67 ms 1.67 ms 167 µs (168 µs	(20 ms) (2 ms) (2 ms) (2 ms) (167 µs) (167 µs) (167 µs) (167 µs) (167 µs) (168 µs) (169 µs) (25 21 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	5½ 5½ 4½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to of AC rms voltathe ratio (DC/ding) com 10% to 10 100kHz, 0.059 MHz.	57 (48 136 (136 140 (140) 2000 (2000) owing % of re 50-100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App % of Range 0.1 0.01) 38 () 70 () 70 () 71 () 200 () 38 () 70 () 70 () 71 ()	(35) (370) 11 (710) 12 (711) 12 (711) 13 (711) 14 (711) 15 (711) 15 (711) 16 (711) 17 (711) 1	53 (45) 22 (122) 22 (122) 27 (127) 00 (2000) FFACTOR N OR = Peak AC / OR RESOLUTIO OR ACCURACY OY. ACTERISTICS: S OR FREQUENCY OR DISPLAY: According to the content of the	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un s plus rms me Same as ACV if (RANGE: 20H cess as multip ADDITION: s. 1 - 2	48 (4 98 (9 99 (9 99 (9 99 (9 14 14 14 14 14 14 14 14 14 14 14 14 14	1) 34 8) 56 9) 58 AC normal 1 ne. + (% of red).2	(30) (56) (58) mode rr eading 4 – 5 0.4
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera .ow Frequenc (rms) For low freque AC + DC CO additiona and avera 200 2V, 2 AVERAGE Normal mode MHz. Add 0 200kHz, and	16.7 ms 1.67 ms 1.67 ms 167 µs (168 µs (169 µs	(20 ms) (2 ms) (2 ms) (2 ms) (167 µs) (167 µs) (167 µs) (167 µs) (167 µs) (168 µs) (169 µs) (25 21 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	5½ 5½ 4½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to of AC rms voltathe ratio (DC/ding) com 10% to 10 100kHz, 0.059 MHz.	57 (48 136 (136 140 (140) 2000 (2000) owing % of re 50-100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App % of Range 0.1 0.01) 38 () 70 () 70 () 71 ()	(35) (370) 12 (770) 12 (771) 1	53 (45) 22 (122) 22 (122) 27 (127) 00 (2000) FFACTOR N OR = Peak AC / OR RESOLUTIO OR ACCURACY OY. ACTERISTICS: S OR FREQUENCY OR DISPLAY: According to the content of the	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC un s plus rms me Same as ACV if (RANGE: 20H ccess as multip ADDITION: s. 1 - 2 0 ge), 90 Days, Hz- 750kH	48 (4 98 (9 99 (9 99 (9 ENT ¹¹ Incertainty + A easurement tin input. Iz – 1MHz. ole display on A AL ERROR 2 – 3 3 0.1 (1) 1 Year or 2 Ye TEMPER. z – ± (% of rea	1) 34 8) 56 9) 58 AC normal 1 ne. 4C volts. ± (% of red) 2 2 ears, Tcal ±	(30) (56) (58) mode ri
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera .ow Frequenc (rms) For low freque additiona and avera 200 2V, 2 AVERAGE Normal mode MHz. Add 0 200kHz, and	16.7 ms 1.67 ms 1.67 ms 167 µs (167 µs	(20 ms) (2 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz 0.1 below 20 G: For nty, mu irrement V EASUI cification range for MEA: Hz-	25 21 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	5½ 5½ 4½ 4½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to of AC rms voltathe ratio (DC/. ding com 10% to 10 100kHz, 0.059 MHz. NT10 10kHz-	57 (48 136 (136 140 (140) 2000 (2000) owing % of re 50–100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App % of Range 0.1 0.01 0% of range fo) 38 () 70 () 70 () 71 ()	(35) (370) 13 (770) 13 (771) 15 (771) 15 (771) 15 (771) 17 (771) 1	53 (45) 22 (122) 22 (122) 27 (127) 200 (2000) FFACTOR IN OR = Peak AC / OR RESOLUTIO OR ACCURACY OR ACTERISTICS: S OR FREQUENCY OR DISPLAY: Acc ST FACTOR S measurement OR: ERROR: ding + % of rang OKHZ- 500k	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. f: Peak AC un s plus rms me Same as ACV if (RANGE: 20H cess as multip	48 (4 98 (9 99 (9 99 (9 99 (9 19 19 19 19 19 19 19 19 19 19 19 19 19	1) 34 8) 56 9) 58 AC normal name. AC volts. ± (% of red) 4 0.2 ears, Tcal ± ATURE COE adding +% of	(30) (56) (58) mode ri
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera construction) For low frequency (rms) For low frequency (rms) AC + DC Constitution and avera construction and	16.7 ms 1.67 ms 1.67 ms 167 µs (167 µs (167 µs (167 µs (168 µs (169 µs	(20 ms) (2 ms) (2 ms) (167 µs) (167 µs) (167 µs) (167 µs) (168 µs) (169 µs)	25 21 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	5½ 5½ 5½ 4½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to fAC rms voltatheratio (DC/. ding com 10% to 10 100kHz, 0.059 MHz. NT10 10kHz- 30kHz 0.1 +0.7 0.1 +0.3	57 (48 136 (136 140 (140) 2000 (2000) owing % of re 50–100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App % of Range 0.1 0.01 OW of range, % of range fo REPETITIVE 30kHz- 50kHz 0.15+0.7 0.15+0.3	38 (0) 70 (1) 70 (1) 71	(35) (37) (37) (37) (37) (37) (37) (37) (37	53 (45) 22 (122) 22 (122) 27 (127) 00 (2000) FACTOR IN OR = Peak AC / OR RESOLUTIO OR ACCURACY OR DISPLAY: Accuracy OR DISPLA	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. The Peak AC units of the properties of the prop	48 (4 98 (9 99 (9 99 (9 99 (9 99 (9 9	1) 34 8) 56 9) 58 AC normal name. AC volts. ± (% of real data and the control of	(30) (56) (58) mode ri eading 4 - 5 0.4 5 ℃ EFFICIEI range)/ ± 5 ℃ 33 33
1 0.1 0.01 0.018 AC COUPI Normal Mode (rms, avera .ow Frequenc (rms) For low freque AC + DC CO additiona and avera 200 2V, 2 AVERAGE Normal mode MHz. Add 0 200kHz, and ACV PEAK RANGE 200 mV 20 V 200 V	16.7 ms 1.67 ms 1.67 ms 167 µs (167 µs	(20 ms) (2 ms) (2 ms) 167 µs) 167 µs) or AC or 1–10Hz 0.1 below 20 G: For nty, mu irrement V EASUI cification range for the many for the complete for the c	25 21 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	5½ 5½ 5½ 4½ 4½ 4½ 4½ 20–50Hz 0.41 0 fications apply to of AC rms voltathe ratio (DC/. ding com 10% to 10 100kHz, 0.059 MHz. NT10 10kHz- 30kHz 0.1 +0.7	57 (48 136 (136 140 (140) 2000 (2000) owing % of re 50–100Hz 1 0.07 0 for sine wave i age, apply th AC rms). App % of Range 0.1 0.01 OW of range fo REPETITIVE 30kHz- 50kHz 0.15+0.7) 38 () 70 () 70 () 71 ((35) (370) 12: (770) 12: (771) 12: (771) 12: (771) 13: (53 (45) 22 (122) 22 (122) 27 (127) 00 (2000) FACTOR IN OR = Peak AC / OR RESOLUTIO OR ACCURACY OY. OR TIME: 100m ACTERISTICS: S OR FREQUENCY OR DISPLAY: Ac ST FACTOR S measurement OR: ERROR: ding + % of rang OKHZ - 500K OKHZ - 500K OKHZ - 500K OKHZ - 505K+	36 (33) 64 (64) 66 (66) MEASUREM rms AC. N: 3 digits. ': Peak AC ur s plus rms me Same as ACV i (RANGE: 20H cess as multip ADDITION s. 1 - 2 0 ge), 90 Days, HZ- 1MH 2 1MH 2 0.7 9+0.7 0.3 9+0.3 0.7 9+0.7	48 (4 98 (9 99 (9 99 (9 ENT ¹¹ Incertainty + A Passurement ting Input. Iz - 1MHz. AL ERROR 2 - 3 0.1 1 Year or 2 Year TEMPER IZ - ± (% of recovery)	1) 34 8) 56 9) 58 AC normal name. AC volts. ± (% of relative for the content of the content o	(30) (56) (58) mode ri eading 4 - 5 0.4 5°C EFFICIEI range), ± 5°C 03 03 03

PEAK MEASUREMENT WINDOW: $100 ms\ per\ reading.$

MAXIMUM INPUT: $\pm 1100V$ peak, $2\!\!\times\!\!10^7V\!\bullet\!Hz$ (for inputs above 20V).

DEFAULT MEASUREMENT RESOLUTION: 4 digits. NON-REPETITIVE PEAK: 10% of range per μ s typical slew rate for single spikes. PEAK WIDTH: Specifications apply for all peaks $\geq 1\mu$ s.

AC VOLTS (cont'd)

SETTLING CHARACTERISTICS:

<300ms to 1% of step change Normal Mode (rms. avg.)

<450ms to 0.1% of step change <500ms to 0.01% of step change

Low Frequency Mode (rms) <5s to 0.1% of final value COMMON MODE REJECTION: For $1k\Omega$ imbalance in either lead: >60dB for line frequency ±0.1%.

MAXIMUM VOLT•Hz PRODUCT: 2 × 107V•Hz (for inputs above 20V). AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

AC VOLTS NOTES

- 1. Specifications apply for sinewave input, AC + DC coupling, 1 power line cycle, digital filter off, following 55 minute warm-up.
- 2. Temperature coefficient applies to rms or average readings. For frequencies above 100kHz, add 0.01% of reading/°C to temperature coefficient.
- $3.\ For\ 1\%\ to\ 5\%\ of\ range\ below\ 750V\ range,\ and\ for\ 1\%\ to\ 7\%\ of\ 750V\ range,\ add\ 0.01\%\ to\ range,\ uncertainty.\ For\ inputs\ from\ 200kHz\ to\ 2MHz,\ specifications\ apply\ above\ 10\%\ of\ range.$
- 4. Add 0.001% of reading $\times\,(V_{\rm IN}/100V)^2$ additional uncertainty above 100V rms.
- 5. Typical values.
- 6. For DELAY=0, digital filter off, display off (or display in "hold" mode). Internal Trigger, Normal mode. See Operating Speed section for additional detail. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). Applies for rms and average mode. Low frequency mode rate is typically 0.2 readings per second.
- 7. For overrange readings 200-300% of range, add 0.1% of reading. For 300-400% of range, add 0.2% of reading.
- In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 9. AC peak specifications assume AC + DC coupling for frequencies below 200Hz.
- 10. Specifications apply for 10 reading digital filter. If no filter is used, add 0.25% of range typical uncertainty.

TEMPERATURE

11. Subject to peak input voltage specification.

OHMS

TWO-WIRE AND FOUR-WIRE OHMS (2W and 4W Ohms Functions)

RANGE	FULL SCALE	RESOLUTION	DEFAULT RESOLUTION	CURRENT ¹ SOURCE	OPEN CIRCUIT ¹²	MAXIMUM LEAD RESISTANCE ²	MAXIMUM OFFSET COMPENSATION ³	± (ppm of reading + ppm of range)/℃ Outside T _{CAL} ± 5°
20 Ω	21.000000	1 μΩ	10 μΩ	9.2 mA	5 V	1.7 Ω	±0.2 V	8 + 1.5
200Ω	210.00000	10 μΩ	100 μΩ	0.98 mA	5 V	12 Ω	±0.2 V	4 + 1.5
2 kΩ	2100.0000	100 μΩ	$1 \text{ m}\Omega$	0.98 mA	5 V	100Ω	−0.2 V to +2 V	2.5 + 0.2
20 kΩ	21.000000	1 mΩ	$10~\mathrm{m}\Omega$	89 μΑ	5 V	$1.5 \text{ k}\Omega$	-0.2 V to +2 V	4 + 0.2
200 kΩ	210.00000	$10~\mathrm{m}\Omega$	$100 \text{ m}\Omega$	7 μA	5 V	$1.5 \text{ k}\Omega$		11 + 0.2
$2~\mathrm{M}\Omega$ 4	2.1000000	$100 \text{ m}\Omega$	1 Ω	770 nA	5 V	1.5 kΩ		25 + 0.2
$20~\mathrm{M}\Omega$ 4	21.000000	1Ω	10Ω	70 nA	5 V	$1.5 \text{ k}\Omega$		250 + 0.2
$200\mathrm{M}\Omega^{4}$	210.00000	10Ω	100 Ω	4.4 nA	5 V	$1.5 \text{ k}\Omega$		4000 + 10
$1~\mathrm{G}\Omega^{4}$	1.0500000	100 Ω	1 kΩ	4.4 nA	5 V	$1.5 \text{ k}\Omega$		4000 + 10

RESISTANC	E ACCURAC	CY ⁵ ± (ppn	n of reading + pp	m of range)
RANGE	24 Hours ⁶	90 Days ⁷	1 Year ⁷	2 Years ⁷
20 Ω	29 + 7	52 + 7	72 + 7	110 + 7
200Ω	24 + 7	36 + 7	56 + 7	90 + 7
$2 k\Omega$	22 + 4	33 + 4	50 + 4	80 + 4.5
20 kΩ	19 + 4	32 + 4	50 + 4	80 + 4.5
200 kΩ	20 + 4.5	72 + 4.5	90 + 4.5	130 + 5
$2 \mathrm{M}\Omega$ 4	50 + 4.5	110 + 4.5	160 + 4.5	230 + 5
$20\mathrm{M}\Omega^{4}$	160 + 4.5	560 + 4.5	900 + 4.5	1100 + 5
$200 \mathrm{M}\Omega^{4}$	3000 + 100	10000 + 100	20000 + 100	30000 + 100
1 GΩ ⁴	9000 + 100	20000 + 100	40000 + 100	60000 + 100

RESISTANCE UNCERTAINTY = \pm [(ppm of reading) \times (measured value) + (ppm of range) \times (range used)] / 1,000,000.

1PPM OF RANGE = 2 counts for ranges up to 200M Ω and 1 count on 1G Ω range at 61/2 digits.

SPEED AND A	ACCURACY9	90 Days	
		ACCURACY	
	± (ppm of reading+	ppm of range+ppm of	range rms noise12)
	1PLC	0.1PLC ¹¹	0.01PLC8,11
RANGE	DFILT Off	DFILT Off	DFILT Off
20 Ω	52+ 7+0.6	52+ 30+10	110+200+ 35
200Ω	36+7+0.6	36+ 30+10	110+200+ 35
2 kΩ	33+ 4+0.2	33+ 24+ 1	130+230+ 5
20 kΩ	32 + 4 + 0.2	32+24+2	130+230+ 5
200 kΩ	72+4.5+0.5	72+ 25+ 4	150+300+ 10
$2~\mathrm{M}\Omega$ 4	110+4.5+2	110+ 25+15	150+300+150
$20~\mathrm{M}\Omega$ 4	560+ 4.5+ 5	560+ 30+20	560+300+150
$200\mathrm{M}\Omega$ 4	10,000+100+40	10,000+120+80	10,000+700+250
1 GΩ ⁴	20,000+100+40	20,000+120+80	20,000+700+250

PLC = Power Line Cycles. DFILT = Digital Filter.

2-WIRE ACCURACY ⁷ ± (ppr	n of range)		
RANGE	$20~\Omega$	$200~\Omega$	$2\;k\Omega$
ADDITIONAL UNCERTAINTY (inside Tcal ± 5°C)	300 ppm	30 ppm	3 ppm
TEMPERATURE COEFFICIENT (outside Tcal ± 5°C)	70ppm/°C	7ppm/°C	0.7ppm/°C

SETTLING CHARACTERISTICS: For first reading following step change, add the total 90-day measurement error for the present range. Pre-programmed settling delay times are for <200pF external circuit capacitance. For 200M $\!\Omega$ and $1 \mbox{G} \Omega$ ranges, add total 1 year errors for first reading following step change. Reading settling times are affected by source impedance and cable dielectric absorption characteristics.

OHMS MEASUREMENT METHOD: Constant current. OFFSET COMPENSATION: Available on $20\Omega - 20k\Omega$ ranges. OHMS VOLTAGE DROP MEASUREMENT: Available as a multiple display. AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

[%] ACCURACY = (ppm accuracy) / 10,000.

2-WIRE R	ESISTANCE READ	ING RATES10,12	20Ω , 200Ω , $2k\Omega$, and 20	kΩ Ranges	_
NPLC	MEASUREMENT APERTURE	DEFAULT BITS DIGITS	READINGS/SECOND TO MEMORY Auto Zero Off Auto Zero On	READINGS/SECOND TO IEEE-488 Auto Zero Off Auto Zero On	READINGS/SECOND WITH TIME STAMP TO IEEE-488 Auto Zero Off Auto Zero On
$10 \\ 2 \\ 1 \\ 0.2^{11} \\ 0.1^{11} \\ 0.02^{11} \\ 0.01^{11} \\ 0.01^{8.11}$	167 ms (200 ms) 33.4 ms (40 ms) 16.7 ms (20 ms) 3.34 ms (4 ms) 1.67 ms (2 ms) 334 µs (400 µs) 167 µs (167 µs) 167 µs (167 µs)	$\begin{array}{cccc} 28 & 7^{1/2} \\ 26 & 7^{1/2} \\ 25 & 6^{1/2} \\ 22 & 6^{1/2} \\ 21 & 5^{1/2} \\ 19 & 5^{1/2} \\ 16 & 4^{1/2} \\ 16 & 4^{1/2} \end{array}$	6 (5.1) 2 (1.7) 30 (25) 8 (7.1) 58 (48) 40 (34) 219 (189) 109 (97) 300 (300) 126 (118) 300 (300) 130 (130) 421 (421) 135 (135) 2000 (2000)	5 (4) 2 (1.6) 28 (23) 8 (6.8) 53 (45) 37 (32) 197 (162) 97 (87) 248 (245) 112 (108) 249 (249) 114 (114) 306 (306) 114 (114) 2000(2000)	5 (4) 2 (1.6) 27 (22) 8 (6.7) 49 (41) 35 (31) 140 (129) 79 (74) 164 (163) 89 (88) 165 (165) 91 (91) 189 (189) 92 (92)
2-WIRE R	ESISTANCE READ	ING RATES ^{10,12}	2 20M Ω Range		
NPLC	MEASUREMENT APERTURE	DEFAULT BITS DIGITS	READINGS/SECOND TO MEMORY Auto Zero Off Auto Zero On	READINGS/SECOND WITH TIME STAMP TO IEEE-488 Auto Zero Off Auto Zero On	
10	167 ms (200 ms)	28 71/2	6 (5.1) 1 (0.8)	2 (1.8) 1 (0.8)	
2 1	33.4 ms (40 ms) 16.7 ms (20 ms)	$ \begin{array}{ccc} 26 & 7\frac{1}{2} \\ 25 & 6\frac{1}{2} \end{array} $	30 (25) 1 (0.8) 58 (48) 4 (3.8)	16(14.5) 1 (0.8) 25 (22) 4 (3.5)	
0.111	1.67 ms (2 ms)	21 5½	300 (296) 5 (5)	43 (39) 5 (4.7)	
0.02^{11}	334 µs (400 µs)	19 51/2	300 (300) 5 (5)	43 (43) 5 (5)	
0.01^{11}	167 μs (167 μs)	16 41/2	412 (412) 5 (5)	43 (43) 5 (5)	
4-WIRE R	ESISTANCE READ	ING RATES ^{10,12}	Any Range READINGS OF READINGS WI	TH TIME STAMP/SECOND	
NPLC	MEASUREMENT APERTURE	DEFAULT BITS DIGITS		88, AUTO ZERO ON	
10	167 ms (200 ms)	28 71/2	2 (1.6)	0.6 (0.5)	
2	33.4 ms (40 ms)	26 71/2	7 (6.1)	2 (1.6)	
1	16.7 ms (20 ms)	25 61/2	12 (11.6)	3 (3.7)	
0.111	1.67 ms (2 ms)	21 5½	20 (20)	6 (6)	
0.01^{11}	167 μs (167 μs)	16 4½	21 (21)	7 (7)	

OHMS NOTES

- 1. Current source is typically $\pm 9\%$ absolute accuracy.
- 2. Total of measured value and lead resistance cannot exceed full scale.
- $3.\ Maximum\ offset\ compensation\ plus\ source\ current\ times\ measured\ resistance\ must\ be\ less\ than\ source\ current\ times\ resistance\ range\ selected.$
- 4. For 2-wire mode.
- 5. Specifications are for 1 power line cycle, 10 reading digital filter, Auto Zero on, 4-wire mode, offset compensation on (for 20Ω to $20k\Omega$ ranges).
- 6. For T_{CAL} $\pm 1^{\circ}C$, following 55 minute warm-up. T_{CAL} is ambient temperature at calibration (23°C at the factory).
- 7. For $T_{\text{CAL}}\,\pm 5^{\circ}\text{C},$ following 55-minute warm-up. Specifications include traceability to US NIST.
- 8. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every $24\ hours.$
- 9. For $T_{CAL}\pm 5^{\circ}C$, 90-day accuracy. 1-year and 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 10. For DELAY=0, digital filter off, internal trigger, display off. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). Speed for $200k\Omega$ range is typically 10% slower than $20k\Omega$ range; speed for $2M\Omega$ range is typically 3 times faster than $20M\Omega$ range; speed for 16Ω range is typically 30%-50% as fast as $20M\Omega$ range. See Operating Speed section for additional detail.
- 11. Ohms measurements at rates lower than 1 power line cycle are subject to potential noise pickup. Care must be taken to provide adequate shielding.
- 12. Typical values.

DC AMPS

DCI INPUT CHARACTERISTICS AND ACCURACY4 MAXIMUM ACCURACY1 TEMPERATURE COFFFICIENT **FULL** DEFAULT ± (ppm of reading + ppm of range) BURDEN ± (ppm of reading + ppm of range)/℃ RESOLUTION RESOLUTION 2 Years³ **RANGE SCALE** VOLTAGE⁶ 24 Hours² 90 Days³ 1 Year³ Outside TcaL ± 5℃ 200 μΑ 210.00000 10 pA 100 pA 0.25 V 63 + 25300 + 25500 + 251350 + 2558 + 7 2.1000000 100 pA 0.31 V 64 + 20300 + 20400 + 20750 + 2058 + 5 2 mA 1 nA 65 + 2020 mA 21.000000 10 nA 0.4 V 300 + 20400 + 20750 + 2058 + 51 nA 210.00000 96 + 20500 + 20200 mA 10 nA 0.5 V 300 + 20750 + 2058 + 5100 nA 2.1000000 2 A 1.5 V 500 + 201350 + 20100 nA 1 μΑ 600 + 20900 + 2058 + 5

DC CURRENT UNCERTAINTY = ±[(ppm reading)×(measured value) + (ppm of range)×(range used)] / 1,000,000.

% ACCURACY = (ppm accuracy) / 10,000.

10PPM OF RANGE = 20 counts at 61/2 digits.

DCI REAL	DING RATES ^{5,9}								
								READINGS/SI	ECOND WITH
	MEASUREMENT		DEFAULT	READINGS/SECC	OND TO MEMORY	READINGS/SECOND	TO IEEE-488	TIME STAMP	TO IEEE-488
NPLC	APERTURE	BITS	DIGITS	Auto Zero Off	Auto Zero On	Auto Zero Off A	uto Zero On	Auto Zero Off	Auto Zero On
10	167 ms (200 ms)	28	71/2	6 (5.1)	2 (1.7)	6 (4.8)	2 (1.6)	6 (4.8)	2 (1.6)
2	33.4 ms (40 ms)	26	71/2	30 (24)	10 (8.2)	28 (23)	9 (7.8)	27 (22)	9 (7.7)
1	16.7 ms (20 ms)	25	$6^{1/2}$	57 (48)	45 (38)	53 (45)	41 (35)	48 (41)	40 (32)
0.2	3.34 ms (4 ms)	22	61/2	217 (195)	122 (111)	186 (168)	09 (98)	135 (125)	88 (85)
0.1	1.67 ms (2 ms)	21	$5\frac{1}{2}$	279 (279)	144 (144)	234 (229)	23 (123)	158 (156)	99 (98)
0.02	334 µs (400 µs)	19	$5\frac{1}{2}$	279 (279)	148 (148)	234 (234)	30 (130)	158 (158)	101 (101)
0.01	167 μs (167 μs)	16	41/2	298 (298)	150 (150)	245 (245)	32 (132)	164 (164)	102 (102)
0.01^{7}	167 µs (167 µs)	16	41/2	2000 (2000)		2000 (2000)			

DC AMPS (cont'd)

SPEED AND	ACCURACY ⁸	90 Days	
		ACCURACY	
	+ (ppm of reading	+ppm of range+ppm o	f range rms noise9)
	1PLC	0.1PLC	0.01PLC ⁷
			U.UTPLC
RANGE	DFILT Off	DFILT Off	DFILT Off
200 μΑ	300+25+0.3	300+50+8	300+200+80
2 mA	300+20+0.3	300+45+8	300+200+80
20 mA	300+20+0.3	300+45+8	300+200+80
200 mA	300+20+0.3	300+45+8	300+200+80
2 A	600+20+0.3	600+45+8	600+200+80

SETTLING CHARACTERISTICS: $<500\mu s$ to 50ppm of step size. Reading settling times are affected by source impedance and cable dielectric absorption characteristics. Add 50ppm of range for first reading after range change.

MAXIMUM ALLOWABLE INPUT: 2.1A, 250V.

 ${\tt OVERLOAD\ PROTECTION:\ 2A\ fuse\ (250V),\ accessible\ from\ front\ (for\ front\ input)}$ and rear (for\ rear\ input).}

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

PLC = Power Line Cycle. DFILT = Digital Filter.

DC AMPS NOTES

- 1. Specifications are for 1 power line cycle, Auto Zero on, 10 reading digital filter.
- 2. For $T_{CAL} \pm 1^{\circ}C$, following 55 minute warm-up.
- 3. For $T_{\text{CAL}} \pm 5^{\circ}\text{C},$ following 55 minute warm-up. Specifications include traceability to US NIST.
- 4. Add 50 ppm of range for current above 0.5A for self heating.
- For DELAY=0, digital filter off, display off. Internal trigger. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). See Operating Speed section for additional detail.
- 6. Actual maximum voltage burden = (maximum voltage burden) × (Imeasured/Ifull scale).
- 7. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 8. For Tcal. $\pm 5^{\circ}$ C, 90-day accuracy. 1-year and 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 9. Typical values.

DC IN-CIRCUIT CURRENT

The DC in-circuit current measurement function allows a user to measure the current through a wire or a circuit board trace without breaking the circuit.

When the In-Circuit Current Measurement function is selected, the 2001 will first perform a 4-wire resistance measurement, then a voltage measurement, and will display the calculated current.

TYPICAL RANGES:

 $\begin{tabular}{lll} Current: & 100 \mu A \ to \ 12A. \\ Trace \ Resistance: & 1m \Omega \ to \ 10\Omega \ typical. \\ Voltage: & \pm 200 mV \ max. \ across \ trace. \\ \end{tabular}$

Speed: 4 measurements/second at 1 power line cycle.

Accuracy: $\pm (5\% + 2 \text{ counts})$. For 1 power line cycle, Auto Zero on, 10

reading digital filter, TCAL ±5°C, after being properly zeroed.

90 days, 1 year or 2 years.

MEASUREMENT RANGE CHART

AC AMPS

AC magnitude: RMS or Average.

ACI INPUT CHARACTERISTICS

RMS RANGE	PEAK INPUT	FULL SCALE RMS	RESOLUTION	DEFAULT RESOLUTION	MAXIMUM BURDEN VOLTAGE ⁵	TEMPERATURE COEFFICIENT ± (% of reading + % of range)/°C Outside Tcal. ± 5°C
200 μΑ	1 mA	210.0000	100 pA	1 nA	0.25 V	0.01 + 0.001
2 mA	10 mA	2.100000	1 nA	10 nA	0.31 V	0.01 + 0.001
20 mA	100 mA	21.00000	10 nA	100 nA	0.4 V	0.01 + 0.001
200 mA	1 A	210.0000	100 nA	1 μΑ	0.5 V	0.01 + 0.001
2 A	2 A	2.100000	1 μΑ	10 μA	1.5 V	0.01 + 0.001

ACI ACCURACY^{1,2} 90 Days, 1 Year or 2 Years, T_{CAL} ±5°C, for 5% to 100% of range, ± (% of reading + % of range)

RANGE	20Hz-50Hz	50Hz-200Hz	200Hz-1kHz	1kHz-10kHz	10kHz-30kHz ³	30kHz-50kHz ³	50kHz-100kHz ³
200 μΑ	0.35 + 0.015	0.2 + 0.015	0.4 + 0.015	0.5 + 0.015			
2 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
20 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
200 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.15 + 0.015	0.5 + 0.015	1 + 0.015	3 + 0.015
2 A	0.35 + 0.015	0.2 + 0.015	0.3 + 0.015	0.45 + 0.015	1.5 + 0.015	4 + 0.015	

AC CURRENT UNCERTAINTY = $\pm [$ (% of reading) \times (measured value) + (% of range) \times (range used)] / 100.

PPM ACCURACY = (% accuracy) \times 10,000.

0.015% OF RANGE = 30 counts at $5\frac{1}{2}$ digits.

AC COUPLING: For AC only coupling, add the following % of reading:

20–50Hz 50–100Hz 100–200Hz rms, Average 0.55 0.09 0.015

 $\label{eq:action} AC+DC\ COUPLING:\ For\ DC>20\%\ of\ AC\ rms\ voltage,\ apply\ the\ following\ additional\ uncertainty,\ multiplied\ by\ the\ ratio\ (DC/AC\ rms).$

\$%\$ of Reading \$%\$ of Range \$\$ rms, Average \$0.05\$ 0.1

ACI READING RATES^{3,4}

								READINGS/SI	ECOND WITH
	MEASUREMENT		DEFAULT	READINGS/SECC	OND TO MEMORY	READINGS/SECO	ND TO IEEE-488	TIME STAMP	TO IEEE-488
NPLC	APERTURE	BITS	DIGITS	Auto Zero Off	Auto Zero On	Auto Zero Off	Auto Zero On	Auto Zero Off	Auto Zero On
10	167 ms (200 ms)	28	$6^{1/2}$	6 (5.1)	2 (1.7)	6 (4.9)	2 (1.6)	6 (4.8)	2 (1.6)
2	33.4 ms (40 ms)	26	51/2	30 (25)	9 (7.9)	28 (23)	9 (7.6)	27 (22)	9 (7.5)
1	16.7 ms (20 ms)	25	$5^{1/2}$	57 (48)	39 (35)	53 (45)	37 (33)	49 (41)	34 (30)
0.1	1.67 ms (2 ms)	21	$5\frac{1}{2}$	157 (136)	70 (70)	123 (123)	62 (62)	107 (107)	56 (53)
0.01	167 μs (167 μs)	16	41/2	156 (136)	70 (70)	140 (140)	63 (63)	113 (113)	56 (56)
0.01^{6}	167 μs (167 μs)	16	41/2	2000 (2000)		2000 (2000)			

SETTLING CHARACTERISTICS: <300ms to 1% of step change

<450ms to 0.1% of step change

<500ms to 0.01% of step change

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

HIGH CREST FACTOR ADDITIONAL ERROR ± (% of reading)

Applies to rms measurements.

CREST FACTOR 1 - 22 – 3 3 – 4 4 - 5ADDITIONAL ERROR 0.2 0.4

AVERAGE ACI MEASUREMENT

Rms specifications apply for 10% to 100% of range.

AC AMPS NOTES

- 1. Specifications apply for sinewave input, AC+DC coupling, 1 power line cycle, digital filter off, following 55 minute warm-up.
- 2. Add 0.005% of range uncertainty for current above 0.5A rms for self-heating.
- 3. Typical values
- 4. For DELAY=0, digital filter off, display off, internal trigger. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz).
- $5. \ Actual \ maximum \ voltage \ burden = (maximum \ voltage \ burden) \times (I_{\rm MEASURED}/I_{\rm FULL} \ {\rm scale}).$
- $6. \ In \ burst \ mode, \ display \ off. \ Burst \ mode \ requires \ Auto \ Zero \ refresh \ (by \ changing \ resolution \ or \ measurement \ function) \ once \ every \ 24 \ hours.$

FREQUENCY COUNTER

FREQUENCY/PE	RIOD INPUT	CHARACTER	ISTICS AND A	CCURACY	90 D	ays, 1 Year, o	r 2 Years		
	FREQUENCY RANGE ¹	PERIOD RANGE	DEFAULT RESOLUTION	MINIM 1Hz–1MHz	IUM SIGNA 1–5MHz		MAXIMUM INPUT	TRIGGER LEVEL	ACCURACY ± (% of reading)
AC Voltage Input AC Current Input	1Hz-15 MHz 1Hz- 1 MHz	67 ns – 1 s 1 μs – 1 s	5 digits 5 digits	60 mV 150 μA	60 mV	350 mV	1100 V pk¹ 1 A pk	0-600V 0-600mA	0.03 0.03
MEASUREMENT TE	-	•	ne count at overflo	ow. TR			NT: Trigger level: l-time using the u		0.5% of range steps inge buttons.

READING TIME: 420ms maximum.

ps

FREQUENCY RANGING: Autoranging from Hz to MHz.

FREQUENCY COUPLING: AC + DC or AC only.

FREQUENCY NOTES

1. Subject to $2\times 10^7 V\, {}^{\bullet}\text{Hz}$ product (for inputs above 20V).

TEMPERATURE (RTD)

RANGE	RESO- LUTION	1 Hour ²		CCURACY ³ 1 Year	2 Years
-100° to +100°C	0.001°C	±0.005°C	±0.05°C	±0.08°C	±0.12°C
-200° to $+630^{\circ}$ C	0.001°C	±0.005°C	±0.12°C	±0.14°C	±0.18°C
-212° to $+180^{\circ}F$	0.001°F	±0.009°F	$\pm 0.09^{\circ}F$	$\pm 0.15^{\circ}F$	$\pm 0.22^{\circ} F$
-360° to $+1102^{\circ}F$	$0.001^{\circ}F$	$\pm 0.009^{\circ}F$	$\pm 0.15^{\circ}F$	±0.18°F	±0.33°F

RTD TYPE: 100Ω platinum; DIN 43 760 or IPTS-68, alpha 0.00385, 0.00390, 0.003916, or 0.00392, 4-wire.

MAXIMUM LEAD RESISTANCE (each lead): 12Ω (to achieve rated accuracy). SENSOR CURRENT: 1mA (pulsed).

COMMON MODE REJECTION: <0.005°C/V at DC, 50Hz, 60Hz and 400Hz, (100 Ω imbalance, LO driven).

TEMPERATURE COEFFICIENT: $\pm (0.0013\% + 0.005^{\circ}C)/^{\circ}C$ or $\pm (0.0013\% + 0.01^{\circ}F)/^{\circ}C$ °C outside Tcal ±5°C.

RTD TEMPERATURE READING RATES¹ (2- or 4-Wire)

READINGS or READINGS WITH TIME STAMP/SECOND

	TO MEMORY 0	r IEEE-488	
NPLC	Auto Zero Off	Auto Zero On	
10	1 (1)	1 (1)	
2	5 (4.3)	4 (3.6)	
1	7 (6.5)	6 (5.5)	
0.1	12 (10.8)	9 (9)	
0.01	12 (12)	10 (10)	

TEMPERATURE (Thermocouple)

THERMO- COUPLE TYPE	RANGE	DEFAULT RESOLUTION	ACCURACY ⁴
J K T E R S	-200° to + 760°C -200° to +1372°C -200° to + 400°C -200° to +1000°C 0° to +1768°C 0° to +1768°C	0.1°C 0.1°C 0.1°C 0.1°C 1 °C	±0.5°C ±0.5°C ±0.5°C ±0.6°C ±3°C +3°C
В	+350° to +1820°C	1 °C	±5 °C

TC TEMPERATURE READING RATES¹

	TO MI	S/SECOND EMORY D Zero	TO IE	S/SECOND EE-488 D Zero	READINGS WITH TIM TO IEE Auto	E STAMP E-488
NPLC	Off	On	Off	On	Off	On
10 2 1 0.1 0.01	139 (139)	2 (1.7) 9 (7.6) 43 (37) 95 (95) 98 (98)	4 (3.4) 28 (23) 53 (45) 126 (123) 156 (156)	2 (1.4) 9 (7.3) 40 (32) 85 (84) 87 (87)	4 (3.4) 27 (22) 49 (41) 99 (99) 119 (119)	2 (1.4) 8 (7.2) 37 (30) 72 (72) 73 (73)

TEMPERATURE NOTES

- 1. Typical speeds for Auto Zero on. For DELAY=0, digital filter off, display off, internal trigger. Rates are for 60Hz and (50Hz).
- 2. For ambient temperature ± 1 °C, measured temperature ± 10 °C, 10-reading digital filter.
- 3. Excluding probe errors. Tcal ±5°C.
- 4. Relative to external 0°C reference junction; exclusive of thermocouple errors. Junction temperature may be external. Applies for 90 days, 1 year or 2 years, Tcal ±5°C.

OPERATING SPEED

The following diagram illustrates the factors that determine a DMM's reading rate.

COMMAND RECEIVE AND INTERPRET SPEED						
	FASTEST	TYPICAL	SLOWEST			
Time per character Characters per second	0.16 ms 6250	0.28 ms 3751	0.66 ms 1515			
TYPICAL COMMAND TIM Command	ES	Receive and Interpret Time	Rate (per second)			
SENSE1:VOLTAGE:AC: RESOLUTION MAXIMU! VOLT:AC:RES:MAX SENSE1:FUNC 'VOLT:AC RESISTANCE:RANGE:U STATUS:QUEUE:CLEAR STAT:QUE:CLE *TRG	C" PPER 1E9	9.4 ms 4.1 ms 6.3 ms 9.0 ms 5.1 ms 3.1 ms 1.2 ms	106 243 158 111 196 322 833			

MEASUREMENT SPEED CHANGE TIMES^{1,2}

 $Typical\,delay\,before\,first\,reading\,after\,making\,a\,speed\,change.$

- J F				8
FUNCTION	From	То	AUTO ZERO OFF Time	AUTO ZERO ON Time
DCV, DCI, ACI	Any	≤ 0.1 PLC	66 ms	44 ms
	Any	1 PLC	190 ms	140 ms
	Any	10 PLC	1540 ms	1195 ms
ACV	Any	≤ 0.1 PLC	120 ms	100 ms
	Any	1 PLC	250 ms	197 ms
	Any	10 PLC	1600 ms	1250 ms
Ohms (2-wire)	Any	≤ 0.1 PLC	69 ms	57 ms
	Any	1 PLC	195 ms	170 ms
	Any	10 PLC	1540 ms	1370 ms
Ohms (4-wire)	Any	≤ 0.1 PLC	110 ms	46 ms
	Any	1 PLC	240 ms	165 ms
	Any	10 PLC	1590 ms	1370 ms
TC Temperature	Any	≤ 0.1 PLC	80 ms	55 ms
	Any	1 PLC	195 ms	170 ms
	Any	10 PLC	1545 ms	1370 ms

			AUTO	ZERO OFF	AUTO ZE	RO ON
FROM	TO		7.0.0	RATE	7.0.0 2.	RATE
Function	Function	Range(s)	TIME	(per second)	TIME	(per second)
Any	DCV	200mV, 2V	8.1 ms	120	36 ms	2 7
		20V	8.1 ms	120	8.6 ms	110
		200V	24 ms	40	52 ms	19
		1000V	11 ms	160	10.2 ms	190
Any	ACV	Any	563 ms	1.8	563 ms	1.8
Any except ACI	DCI	200μA, 2mA, 20mA	4.5 ms	220	5.1 ms	190
		200mA, 2A	$6.0\mathrm{ms}$	160	6.6 ms	150
ACI		Any	21.1 ms	4 5	22 ms	4 5
Any	ACI	Any	521 ms	1.9	521 ms	1.9
Any	Ohms (2-wire)	20Ω, 200Ω, 2kΩ, 20kΩ	6.0 ms	165	34 ms	29
		$200 \mathrm{k}\Omega$	26 ms	38	61 ms	16
		$2M\Omega$	95 ms	10.5	425 ms	2.4
		$20 \mathrm{M}\Omega$	265 ms	4	690 ms	1.4
		$200 \mathrm{M}\Omega$, $1 \mathrm{G}\Omega$	366 ms	3	5.5 ms	180
Any	Ohms (4-wire)	20Ω , 200Ω , $2k\Omega$, $20k\Omega$	12 ms	140	34.1 ms	29
v		$200 \mathrm{k}\Omega$	26 ms	38	60 ms	16
Any except ACI and Ohms	Frequency8	Any	61 ms	16	60 ms	17
AČI, Ohms (4-wire)		Any	79 ms	12	75 ms	13
Ohms (2-wire)		Any	418 ms	2	416 ms	2
Any	RTD Temp. (2-w	rire) Any	6.0 ms	165	33 ms	30
·	RTD Temp. (4-w		11.5 ms	150	37 ms	2 7
	TC Temp.	Any	8.0 ms	125	35 ms	28

OPERATING SPEED (cont'd)

RANGE CHANG	GE SPEED ¹		AUTO	ZERO OFF	AUTO Z	ERO ON
FUNCTION	From	То	TIME	RATE (per second)	TIME	RATE (per second)
DCV	200mV, 2V	20V	4.5 ms	220	3.1 ms	190
	200V, 1000V	20V	8.0 ms	120	8.6 ms	110
	200mV, 2V, 20V	200mV, 2V, 20V	4.5 ms	220	36 ms	27
	200V, 1000V	200mV, 2V	8.0 ms	120	38 ms	26
	200mV, 2V, 20V	200V	24 ms	41	52 ms	19
	1000V	200V	9 ms	110	37 ms	27
	Any	1000V	11 ms	165	10.1 ms	190
ACV	Any	Any	563 ms	1.8	563 ms	1.8
DCI	Any	200μA, 2mA, 20mA	4.5 ms	220	5.2 ms	190
	v	200mA, 2A	6.0 ms	160	6.6 ms	150
ACI	Any	Any	525 ms	1.9	525 ms	1.9
Ohms (2-wire)	Any	20Ω , 200Ω , $2k\Omega$, $20k\Omega$	6.0 ms	160	34 ms	29
	Any	$200 \mathrm{k}\Omega$	26 ms	38	66 ms	1 5
	Any	$2M\Omega$	95 ms	10	420 ms	2.3
	Any	$20 \mathrm{M}\Omega$	265 ms	3.7	690 ms	1.4
	Any	$200 \mathrm{M}\Omega,~1 \mathrm{G}\Omega$	366 ms	2.7	5.5 ms	180
Ohms (4-wire)	Any	20Ω , 200Ω , $2k\Omega$, $20k\Omega$	8 ms	160	34 ms	29
	Anv	$200 \mathrm{k}\Omega$	26 ms	38	66 ms	16

TRIGGER SPEED (External Trigger or Trigger-Link)

 $\begin{array}{ccc} & \text{Auto Zero On} & \text{Auto Zero Off} \\ \text{Trigger Latency:} & \textbf{1.2 ms typical} & \textbf{2} & \mu s \\ \text{Trigger Jitter:} & & & & & & & \\ & & & & & & & & \\ \end{array}$

ENGINEERING UNIT CONVERSION SPEED

Included in reading times for multiple measurements; add to total time for single measurements only.

CONFIGURATION	TIME	RATE (per second)	
DCV	2.4 ms	416	
DCV, Filter on	2.4 ms	416	
DCV, Relative on	2.5 ms	400	
DCV, Ratio on	3.7 ms	270	
ACV	5.3 ms	188	
ACV, Relative on	5.3 ms	188	
ACV, Filter on	6.8 ms	147	
ACV, dB	9.4 ms	106	
ACV, dBm	17.3 ms	57	
DCV, Ratio on ACV ACV, Relative on ACV, Filter on ACV, dB	3.7 ms 5.3 ms 5.3 ms 6.8 ms 9.4 ms	270 188 188 147 106	

DISPLAY SPEED

 $Display\,updated\,at\,up\,to\,20\,times\,per\,second.\,Display\,update\,can\,be\,suspended\,by\,holding\,the\,display\,(press\,ENTER)\,or\,setting\,Display\,Enable\,Offfrom\,GPIB.$

MATH AND	2 TIV/II I	CVICIII	MUDITA	SDEED1
IVIA I II AIVU	LIIVII I 3	CALCUL	AHON	SEFED.

CALCULATION	NOMINAL	NOMINAL	MAXIMUM
	TIME	RATE (per second)	TIME
mX + b Percent Limits ⁶ None	0.35 ms 0.60 ms 0.35 ms 0.07 ms	2850 1660 2850	0.44 ms 0.64 ms 0.37 ms 0.08 ms

GPIB DATA FORMATTING TRANSMISSION TIME³

FORMAT	READIN ONL Time		READINGS WITH TIME STAMP Time Rdg./s	
DREAL (Double precision real) SREAL	0.30 ms	3330	2.0 ms 500	
(Single precision real) ASCII	0.37 ms 3.9 ms	2710 255	2.1 ms 475 8.2 ms 120	

SINGLE FUNCTION SCAN SPEED4 (Internal Scanner)

			`			,								
	DCV Time	(20V) ⁷ Rate		e Ohms Ω) ⁷ Rate		e Ohms (Ω) ⁷ Rate	A Time	CV Rate	Frequ Time	ency Rate	T Tempe Time	C erature Rate		TD ure (2-Wire) Rate
TYPE	per Chan.	(Chan./ second)	per Chan.	(Chan./ second)	per	(Chan./ second)	per Chan.	(Chan./ second)	per Chan.	(Chan./ second)	per Chan.	(Chan./ second)	per Chan.	(Chan./ second)
Ratio or Delta ⁵ (2 channels)	4 ms	250	4.4 ms	230	18.5 ms	54								
Fast Scan (using solid state channels)	5.5 ms	181	7 ms	140			520 ms	1.9	958 ms	1	13.8 ms	72		
Normal Scan	10.3 ms	97	12.1 ms	80	21 ms	47	532 ms	1.8	974 ms	1	18 ms	55	95 ms	10

MIXED FUNCTION SCAN SPEED¹ (Internal Scanner)

SCAN CONFIGURATION (Channels)	Average Time/ Channel	Average Rate (Channel/s)
5 chan. DCV, 5 chan. $2w\Omega$	20 ms	50
3 DCV , $3 \text{ 2w}\Omega$, 4 TC	22 ms	45
5 2wRTD, 5 TC	60 ms	17
$5 2 \text{w}\Omega$, $5 2 \text{wRTD}$	60 ms	17
9 DCV, 1 ACV	73 ms	13
2 DCV , 1 ACV , $2 2w\Omega$, $1 4w\Omega$	122 ms	8
5 DCV, 5 Freq.	490 ms	2
$3 \mathrm{DCV}$, $3 \mathrm{ACV}$, $2 4\mathrm{w}\Omega$	220 ms	5

OPERATING SPEED NOTES

- $1.\ With Display off, 1 power line cycle, autorange off, filter off, triggers halted. Display on may impact time by 3% worst case. To eliminate this impact press ENTER (hold) to lock out display from front panel.$
- 2. Based on using 20V, $2k\Omega$, 200mA ranges.
- Auto Zero off, using 386SX/16 computer, average time for 1000 readings, byte order swapped, front panel disabled.
- $4.\ Typical\ times\ for\ 0.01\ power\ line\ cycle,\ autorange\ off,\ Delay=0,\ 100\ measurements\ into\ buffer.$
- 5. Ratio and delta functions output one value for each pair of measurements.
- 6. Time to measure, evaluate limits, and set digital outputs are found by summing measurement time with limits calculation time.
- 7. Auto Zero off.
- 8. Based on 100 kHz input frequency.

DELAY AND TIMER

TIME STAMP

Resolution: 1µs. Accuracy: $\pm 0.01\% \pm 1 \mu s$.

Maximum: 2,100,000.000 000 seconds (24 days, 20 hours).

DELAY TIME (Trigger edge to reading initiation) Maximum: 999,999.999 seconds (11 days, 12 hours).

Resolution: 1ms. Jitter: ±1ms.

TIMER (Reading initiation to reading initiation)

Maximum: 999,999.999 seconds (11 days, 12 hours).

Resolution: 1ms. Jitter: ±1ms.

NOTE: To find measurement speed, see each measurement section.

IEEE-488 BUS IMPLEMENTATION

IMPLEMENTATION: IEEE-488.2, SCPI-1991.0.

MULTILINE COMMANDS: DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD.

UNILINE COMMANDS: IFC, REN, EOI, SRQ, ATN.

INTERFACE COMMANDS: SH1, AH1, T5, TE0, L4, LE0, SR1, RL1, PP0, DC1,

DT1, C0, E1.

MAXIMUM INPUT LEVELS

	RATED INPUT¹	OVERLOAD RECOVERY TIME
HI to LO HI Sense to LO LO Sense to LO I Input to LO	±1100V pk ± 350V pk 250V rms ± 350V pk 250V rms 2A. ± 250V (fused)	< 900 ms < 900 ms < 900 ms
HI to Earth LO to Earth	±1600V ± 500V	< 900 ms

1. For voltages between other terminals, these ratings can be algebraically added.

DIGITAL I/O

CONNECTOR TYPE: 8 pin "D" subminiature.

INPUT: One pin, TTL compatible.

OUTPUTS: Four pins. Open collector, 30V maximum pull-up voltage, 100mA maximum sink current, 10Ω output impedance.

CONTROL: Direct control by output or set real-time with limits.

GENERAL SPECIFICATIONS AND STANDARDS COMPLIANCE

POWER

Voltage: 90-134V and 180-250V, universal self-selecting.

Frequency: 50Hz, 60Hz, or 400Hz self-identifying.

Consumption: <55VA.

ENVIRONMENTAL

Operating Temperature: 0°C to 50 °C.

Storage Temperature: -40 °C to 70 °C.

Humidity: 80% R.H., 0°C to 35°C, per MIL-T-28800E1 Para 4.5.5.1.2.

NORMAL CALIBRATION

Type: Software. No manual adjustments required.

Sources: 2 DC voltages (2V, 20V) and 2 resistances (19k and 1M). Different $calibration \, source \, values \, are \, allowed. \, All \, other \, functions \, calibrated \, (adjusted)$ from these sources and a short circuit. No AC calibrator required for adjustment.

PHYSICAL

Case Dimensions: 90mm high \times 214mm wide \times 369mm deep (3½ in. \times 8½ in. \times $14\frac{1}{2}$ in.).

Working Dimensions: From front of case to rear including power cord and IEEE-488 connector: 15.0 inches.

Net Weight: <4.2kg (<9.2 lbs.). Shipping Weight: <9.1kg (<20lbs.).

STANDARDS

EMI/RFI: Conforms to VDE 0871B (per Vfg 1046/1984), IEC 801-2. Meets FCC part 15 Class B, CISPR-22 (EN55022).

Safety: Conforms to IEC348, CAN/CSA-C22.2. No. 231, MIL-T-28800E1. Designed to UL1244.

Reliability: MIL-T-28800E1.

Maintainability: MIL-T-28800E1.

MTTR: <90 minutes (includes disassembly and assembly, excludes recalibration). MTTR is Mean Time To Repair.

MTBF, Estimated: >75,000 hours (Bellcore method). MTBF is Mean Time Between Failure.

MTTC: <20 minutes for normal calibration. <6 minutes for AC self-calibration. MTTC is Mean Time To Calibrate.

Process: MIL-STD 45662A and BS5750.

ACCESSORIES SUPPLIED

The unit is shipped with line cord, high performance modular test leads, user's manual, option slot cover, and full calibration data. A personal computer startup package is available free.

Note 1: For MIL-T-28800E, applies to Type III, Class 5, Style E.

EXTENDED MEMORY / NON-VOLATILE MEMORY OPTIONS I

DATA STORAGE

SIZE 6½-Digit				SETUP ST	SETUP STORAGE	
MODEL	(Bytes)	41/2-Digit	w/Time Stamp	Type	Number	Type
2001	8k	850	250	volatile	1	non-volatile
2001/MEM1	32k	7,000	1,400	non-volatile	5	non-volatile
2001/MEM2	128k	30,000	6,000	non-volatile	10	non-volatile